Бесплатные Рефераты >>> Математика  



 

 

Цилиндр и конус

 
Цилиндр

Цилиндром называется тело, которое состоит из 2 кругов,
совмещаемых параллельным переносом, и всех отрезков, сое-
диняющих соотв. точки этих кругов. Круги называются осно-
ванием цилиндра, а отрезки - образующими цилиндра. Также,
как и для призмы доказывается, что основания циллиндра
равны и лежат в параллельных плоскостях, образующие пара-
ллельны и равны.

Цилиндр называется прямым, если его образующие перпенди-
кулярны плоскостям оснований. Радиусом ц. называется рад-
иус его основания. Высота - расстояние между плоскостями
оснований. Ось - прямая, проходящая через центры основан.

Сечение ц. плоскостью, проходящей через ось ц. - осевое
сечение.

Теорема 19.1. Плоскость, перпендикулярная оси цилиндра,
пересекает его боковую поверхность по окружности, равной
окружности основания.

Докозательство. Пусть б - плоскость, перпендикулярная
оси цилиндра. Эта плоскость || основаиям. Параллельный
перенос в направлении оси ц., совмещающий плоскость б с
плоскостью основания ц., совмещает сечение б.п плоскостью
б с окружностью основания. Ч.Т.Д.

Призмой, вписанной в цилиндр, называется такая п., осно-
вания которой - равные многоугольники, вписанные в основа-
ние ц. Призма называется описанной около ц., если ее осно-
вания - равные многоугольники, описанные около основания
ц.


Конус
К. называется тело, которое состоит из круга - основания
к., точки не лежащей в плоскости этого круга, - вершины
конуса и всех отрезков, соединяющих вершину конуса с точ-
ками основания. Отрезки, соединяющие вершину к. с точками
окружности основания, называются образующими конуса. К.

называется прямым, если прямая соеденяющая вершину к. с
центром основания, перпендикулярна плоскости основания.

Высотой к. называется перпендикуляр, опущенный из его
вершины на плоскость основания. Осью прямого конуса назы-
вается прямая, содержащая его высоту. Сечение к. плос-
костью, проходящей через его ось, называется осевым сече-
нием. Плоскость, проходящая через образующую к. и перпен-
дикулярная осевому сечению, проведенному через эту обра-
зующую, называется касательной плоскостью конуса.

Теорема 19.2. Плоскость, перпендикулярная оси конуса,
пересекает конус по кругу, а боковую поверхность - по ок-
ружности, с центром на оси конуса.

Док-во. Пусть б - плоскость, перпендикулярная оси конуса
и пересекающая к. Преобразование гомотетии относительно
вершины к., совмещающее плоскость б с плоскостью основа-
ния, совмещает сечение к. плоскостью б с основанием к.

Следовательно, сечение к. плоскостью есть круг, а сечение
б.п. - окружность с центром на оси конуса.

Плоскость, перпендикулярная оси конуса, отсекает он него
меньший к. Оставшаяся часть называется усеченным к. Ч.Т.Д
Пирамидой, вписанной в конус, называется такая пирамида,
основание которой есть многоугольник, вписанный в окруж-
ность основания конуса, а вершиной является вершина кону-
са. Пирамида называется описанной около конуса, если ее
основанием является многоугольник, описанный около осно-
вания к., а вершина совпадает с вершиной к.


 



 

Метод последовательных уступок (Теория принятия решений)
ПЛАН |Введение |3 | |Суть метода последовательных уступок |4 | |Порядок решения детерминированных многокритериальных задач |5 | |методом последовательных уступок | | |Исследование метода последовательных уступок...

Иррациональные уравнения
Иррациональные уравнения ВВЕДЕНИЕ В школьном курсе алгебры рассматриваются различные виды уравнений – линейные, квадратные, биквадратные, кубические, рациональные, с параметрами, иррациональные и другие. Данная...

Свойства усредненной функции с сильной осцилляцией
Министерство образования Российской Федерации Башкирский государственный педагогический университет Кафедра математического анализа Дипломная квалификационная работаАвтор: Гарипов Ильгиз. Тема: Свойства...

Алгебра логики
Алгебра логики Реферат выполнили ученики 10 класса «В» Криницин Валерий, Урбанович Дмитрий Министерство науки УР Средняя школа № 12 Сарапул, 2004 г. 1. Введение Целью...

Методы решения уравнений, содержащих параметр
Методы решения уравнений, содержащих параметр Выпускная квалификационная работа Выполнил тудент V курса математического факультета Кузнецов Е.М. Вятский государственный гуманитарный ...

Динамические объекты
ДИНАМИЧЕСКИЕ ОБЪЕКТЫ Объектные переменные вo многом подобны обычным переменным Турбо Паскаля, в частности, их можно размещать в динамической памяти. Турбо Паскаль содержит средства, облегчающие размещение объектных переменных...

Газовые законы в живой природе и медицине
Газовые законы в живой природе и медицине Л.В.Логинов, многопрофильный комплекс (гимназия-лицей) N 109, г. Москва Наверное, у каждого учителя есть желание объяснить материал по-своему или рассмотреть его с позиций,...

Центральная предельная теорема и ее доказательство через ряды Тейлора
Прежде чем приступить к рассмотрению центральной предельной теоремы, я считаю нужным сказать о слабой сходимости.Пусть задана последовательность случайных величин (далее с. в.) [pic], задано некоторое распределение [pic]с функцией...

Цилиндр и конус
Цилиндр Цилиндром называется тело, которое состоит из 2 кругов, совмещаемых параллельным переносом, и всех отрезков, сое- диняющих соотв. точки этих кругов. Круги называются осно- ванием цилиндра, а отрезки - образующими...

Позиционные системы счисления
Позиционные системы счисления Система счисления - это способ записи чисел с помощью заданного набора специальных знаков (цифр). Существуют системы позиционные и непозиционные. В непозиционных...

Евклид и Лобачевский
Евклид и Лобачевский (план урока по теме:”Евклидова и неевклидова геометрия”) Имя Евклида навсегда связано с одним из ответвлений математики, получившим название „евклидова геометрия". Столь прочная слава закрепилась за Евклидом заслуженно,...